Course Content
[Section-1] Numbers and Algebra
[Section-2] Functions and Graphs
[Section-3] Geometry and Mensuration
[Section-4] Trigonometry
[Section-5] Calculus (Basic) (Low priority)
[Section-6] Probability and Statistics
[Section-7] Logic and Problem Solving
IMAT Mathematics [Active learning tutor]

IMAT Interactive Study Tool: Conversions, Ratios & Proportions

:root {
–bg-color: #f3f4f6;
–card-bg-color: white;
–text-color: #1f2937;
–header-bg-color: #4338ca;
–header-text-color: white;
–sub-header-bg-color: #e0e7ff;
–formula-bg-color: #e0e7ff;
–formula-border-color: #4f46e5;
–border-color: #e5e7eb;
–accent-color: #6366f1;
}
html.dark {
–bg-color: #1f2937;
–card-bg-color: #374151;
–text-color: #d1d5db;
–header-bg-color: #818cf8;
–header-text-color: #1f2937;
–sub-header-bg-color: #4b5563;
–formula-bg-color: #4b5563;
–formula-border-color: #818cf8;
–border-color: #4b5563;
–accent-color: #a5b4fc;
}
body {
font-family: ‘Inter’, sans-serif;
background-color: var(–bg-color);
color: var(–text-color);
transition: background-color 0.3s, color 0.3s;
}
.card {
background-color: var(–card-bg-color);
border-radius: 0.75rem;
box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
margin-bottom: 1.5rem;
overflow: hidden;
transition: background-color 0.3s;
}
.card-header {
padding: 1rem 1.5rem;
background-color: var(–header-bg-color);
color: var(–header-text-color);
font-size: 1.5rem;
font-weight: 600;
transition: background-color 0.3s, color 0.3s;
}
.card-content { padding: 1.5rem; }
details > summary {
padding: 1rem;
background-color: var(–sub-header-bg-color);
cursor: pointer;
font-weight: 500;
border-radius: 0.5rem;
margin-bottom: 0.5rem;
list-style: none;
position: relative;
transition: background-color 0.3s;
}
details > summary::-webkit-details-marker { display: none; }
details > summary::before {
content: ‘+’;
position: absolute;
right: 1rem;
font-size: 1.5rem;
font-weight: 600;
transition: transform 0.2s;
}
details[open] > summary::before { transform: rotate(45deg); }
.theory-content {
padding: 1rem;
border: 1px solid var(–border-color);
border-radius: 0.5rem;
transition: border-color 0.3s;
}
.formula-box {
background-color: var(–formula-bg-color);
border-left: 4px solid var(–formula-border-color);
padding: 1rem;
margin: 1rem 0;
border-radius: 0.25rem;
transition: background-color 0.3s, border-color 0.3s;
}

Conversions, Ratios & Proportions

IMAT Interactive Study Tool



1. Core Theory

Ratios

A ratio is a way of comparing two or more quantities of the same kind. It shows the relative size of the quantities.

If the ratio of apples to oranges is 2:3, it means for every 2 apples, there are 3 oranges. Ratios can be simplified just like fractions (e.g., a ratio of 4:6 is the same as 2:3).

Proportions

A proportion is an equation that states that two ratios are equal. Proportions are used to solve problems where quantities scale up or down at the same rate.

If (frac{a}{b} = frac{c}{d}), then (ad = bc) (cross-multiplication).

Conversions

Conversions involve changing a quantity from one unit to another (e.g., kilometers to meters). The key is to multiply by a conversion factor, which is a fraction equal to 1.

For example, since 1 km = 1000 m, the conversion factors are (frac{1000 , m}{1 , km}) and (frac{1 , km}{1000 , m}). You choose the one that allows the original units to cancel out.


2. Concept Check

1. True or False: The ratio 5:10 is the same as the ratio 1:2.


2. True or False: If two quantities are in proportion, doubling one quantity means you must double the other.




3. Solved Examples

Example 1: Ratio Problem

A recipe for a drink requires mixing juice and water in the ratio 2:5. If you use 300 mL of juice, how much water do you need?

Step 1: Set up a proportion.

Let (w) be the amount of water needed. The ratio of juice to water must remain the same.

(frac{text{juice}}{text{water}} = frac{2}{5} = frac{300}{w})

Step 2: Solve for (w) using cross-multiplication.

(2 times w = 5 times 300 implies 2w = 1500)

(w = frac{1500}{2} = 750 , mL)

Conclusion: You need 750 mL of water.

Example 2: Unit Conversion

A car is traveling at 72 km/h. What is its speed in m/s?

Step 1: Identify the conversion factors.

1 km = 1000 m

1 hour = 3600 seconds

Step 2: Set up the calculation to cancel units.

(72 , frac{text{km}}{text{h}} times frac{1000 , text{m}}{1 , text{km}} times frac{1 , text{h}}{3600 , text{s}})

Step 3: Calculate the result.

(frac{72 times 1000}{3600} , frac{text{m}}{text{s}} = frac{72000}{3600} , frac{text{m}}{text{s}} = 20 , m/s)

Conclusion: The car’s speed is 20 m/s.


4. MCQ Practice

1. A map has a scale of 1:50,000. If two towns are 4 cm apart on the map, what is the actual distance between them in kilometers?




2. If 5 machines can produce 150 widgets in a day, how many widgets can 8 machines produce in a day, assuming they all work at the same rate?




3. A square has an area of 4 cm². If you convert this area to mm², what is the result? (1 cm = 10 mm)




4. The ratio of boys to girls in a class is 3:4. If there are 12 boys, how many students are there in total?




5. To convert a speed from meters per second (m/s) to kilometers per hour (km/h), you should:





0% Complete